WEAK HARMONIC MAASS FORMS AND MOCK MODULAR FORMS

DAVID LILIENFELDT

ABSTRACT. These are the notes of a talk at the Mock Modular Forms seminar at Concordia Uni-
versity, 5 October 2017. We define weak harmonic Maass forms and mock modular forms and give
some examples. We then prove surjectivity of the shadow map £. We mainly follow the expositions
in [BF] and [Ono]. No originality is claimed and any mistake found here is due to the author.
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1. DEFINITIONS

1.1. First definitions. Let k € 3Z and let v = (¢}) € SLy(Z) (v € Ty(4) if k € 3Z\ Z). Define
the automorphy factor for 7 € H and v by

( 7_)7 ‘/CT+d lkaZ
JVLT) = (g) 621\/07'—}-d if ke %Z\Z

where (g) denotes the Jacobi symbol and ¢; = 1 or ¢ depending on whether d = 1 or 3 modulo
4. We always take the principal branch of the square root. We remark that if k£ € %Z \ Z, then
j(7,7) is the automorphy factor of the theta function ©(7) = > ¢"°. We define the weight k
slash operator on functions f : H — C by (f|x7)(7) = j(v, 7) "2 f(y7).

Definition 1.1. Let N € N, k € 1Z (4N if k € 1Z\ Z) and let x be a Dirichlet character of
modulus N. A weak harmonic Maass form of weight k, level N and Nebentypus x is a smooth
function f : H — C satisfying:

(a) fley = x(d)f for all 7 € To(N).
(b) For each cusp s = a(oo) of I'((IV), we have the following growth condition

(flre)(T) < %Y as y — 400

uniformly in x where 7 = x + iy and for some C' > 0.
1
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(¢) Apf =0 where Ay is the hyperbolic Laplacian of weight k& defined by

0* 9] 9]
Ay = —y (— + —> +iky( 5= +i7-)

ox?  Oy? oxr 0Oy
0? 0
S iky—.
Y oror e Yor

The space of such functions is denoted by Hy (N, x).

Notation. We shall write M}(N,x), Mi(N, x) and Sy(N, x) respectively for the weakly holomor-
phic, the holomorphic and the cuspidal modular forms of weight k, level N and Nebentypus y. If
the character is trivial we shall omit it in the notation.

Remark 1.2. The space M} (N, x) forms a subspace of Hy (N, x) since holomorphic functions are
by definition annihilated by the anti-holomorphic derivative.

1.2. Fourier expansions. Like holomorphic modular forms, weak harmonic Maass forms admit
Fourier expansions that we shall now derive. We will suppose here and in the rest of these notes that
k # 1. Weight 1 forms also admit Fourier expansions with a slight modification to the coefficients
which can be derived in a similar way to what follows.

Let f € Hy (N, x) with k£ # 1. Fix y > 0 and consider the function f, : R — C defined by
fy(z) = f(x+1iy). This function is 1-periodic by (a) and by smoothness admits a Fourier expansion
which converges absolutely and uniformly

f(r Z an(y)q" = Zan e ™e(nx)

nez neZ

where 7 = z + 1y, e(u) = €*™ and ¢ = (7). By uniform convergence and (c) the coefficients of this

series satisfy the differential equation
d2an k? - 2 dan
Ap(an(y)q") =0 ——(y) = <47m + —> —(y)

which is solved by successively solving two degree 1 equations, the first one giving an expression for
dan and the second one yielding an expression for a,. This produces the following solutions

dy
an(y) = C}r(n) + ¢ (n) fimy e 'th=2dt  forn #£ 0
ao(y) = cf(0) + c; (0)y* .
We define H(w) = e [7 e 't*~2dt. This integral converges for k > 1 and admits a meromor-

phic (holomorphlc if w # 0) continuation in k in a similar way as for the gamma function. If w < 0,
then H(w) = e “I'(k — 1, —2w) where I'(s,z) := [ e t*~!d¢ is the incomplete gamma function.
We have the following asymptotic behaviour

Hiw) ~ (2|w])*_kke*|w| for w — —o0
(—2w) Fe® for w — +o0.
This is easily checked by dividing H(w) by these expressions and computing the limits. We have
fr) =Y cj(n)g" +¢; (0)y" "+ ¢; (n)H(2mny)e(nz).
neZ neZz
n#0
Using the asymptotics for the function H we see that the growth condition (b) forces
c¢;(n) =0 for all but finitely many n < 0
c¢;(n) =0 for all but finitely many n > 0.
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We have thus proved the following result.

Proposition 1.3. Let f € Hy (N, x) with k # 1. At the cusp oo the function f admits the Fourier
expansion

f(r)= Y f)g" + 0y + Y ¢ (n)H(2mny)e(n).

n>>—00 n<<7é+ooo
A similar result holds at the other cusps.

Definition 1.4. Let f € Hy_ (N, x). The holomorphic part of f is defined by
> o (n)g
n>>>—oo

and is called a mock modular form of weight &, level N and Nebentypus y. The non-holomorphic
part of f is denoted by

1.3. The operator £. Consider the differential operator &, := 22'ng

Proposition 1.5. The above operator defines an anti-linear map
62—19 : H2—k(N7 X) — MIL(Na X)

given by
i f (1) = Gif (1) = (0)(k — 1) — (4m)* 1 D e (—n)nf g,

n>> oo

Proof. Let f E Hy (N, x). Note that Ay = &g Thus Ag_pf = 0 implies that & (& f) =0
which glves = (. This proves that &_jf is a holomorphic function on the upper half plane. The
modular transformatlon property can be checked by direct computation. It remains to see that the
conditions at the cusps are satisfied in order to prove that &, f is indeed a weakly holomorphic
modular form.

Since f7* is holomorphic we have &_,f = &_pf~. Writing out the definition of the function H

we have N
o=t 5 ([ el
n<&+oo —4mny
n#£0
A quick computation yields 52,k(yk ) =k —1 and fZ*k(ijmy e—ttk—th) _ —(—47m)’“_1e4””y.
Whence
&4/ (1) = O)k = 1) = (4m) " D7 e (m)(=n)* et
n<<;rooo

Notice that e*™¥g" = ¢~". By change of variable we get the formula

Gl (1) = O (= 1) = (4r)* 1 3 (el

n>>>—oo
n#0
A similar formula holds at each cusp. This proves that &_j f is meromorphic at the cusps and thus
belongs to M}(N,Y) as claimed. O

Remark 1.6. Let f € Hy (N, x) with &_rf = 0. Then f~ = 0 so f is holomorphic. Thus the
kernel of &y is My, (N, x).
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Definition 1.7. If f € Hy_ (N, x), then the form & _,f € M.(N,y) is called the shadow of f.

Remark 1.8. The coefficients of the non-holomorphic part of f € Hs (N, x) can be recovered
from the shadow of f via a period integral.

Definition 1.9. We define H, , (N, x) to be the subspace of Hy_;(N, x) consisting of weak harmonic
Maass forms whose shadow is a cusp form, that is H," (N, x) := &, (Sk(N, ¥)).

The forms f that belong to the subspace H, (N, x) satisfy the following growth condition at
the cusps:
(b') For each cusp s = a(o0) of I'g(N) there exists a polynomial Ps s € Clg!'] such that

(flo—ka) (1) — Ps (1) < e as y — 400 for some € > 0.

These forms are completely determined by this condition in the sense that we could define
H) ,(N,x) to be the space of smooth functions f : H — C satisfying conditions (a), (b') and
(¢). This is the definition of weak harmonic Maass forms given in [Ono| whereas the definition that
we use in these notes is the more general one of [BF]. Incorporating this stronger growth condition
at the cusps in our previous proof of the Fourier expansion yields the following result.

Proposition 1.10. Let f € H (N, x). At the cusp oo the function f admits the Fourier expansion
)= > cfn)g"+ > c;(m(k — 1, —dmny)q".
n>3>—o00 n<0

A similar result holds at the other cusps.

Remark 1.11. Note that if k& < 0, then Si(N, ) = 0 so that H) ,(N,x) = Mj_,(N,x) in this
case.

2. EXAMPLES

a) All weakly holomorphic modular forms are weak harmonic Maass forms as we have already
remarked. More precisely we have the inclusions M, (N,x) C H)" (N, x) C Hy_ (N, x).

b) This example concerns the incoherent Eisenstein series of Kudla, Rapoport and Yang that was
mentioned in the introduction talk of this seminar. Let ¢ > 3 be a prime congruent to 3 modulo 4,
set K = Q(y/—¢q) and let x, : (Z/qZ)* — C* be a quadratic character. Consider the Eisenstein
family

E_(r,s):=y"* Y (cr+d)er+d ¢, (7)
(% d)€hoo\T
where ¢ (c,d) = x;'(d) if ¢ =0 mod ¢ and ¢ (c,d) = —ig"/?x4(c) otherwise. The completed
Eisenstein series E* (1, s) := ¢**Y2A(s + 1, x,)E_(7,s) has a zero at s = 0. Kudla, Rapoport and
Yang proved that the incoherent Eisenstein series attached to (1, x,) defined by

d

o(1) == 1

belongs to Hi(q, x,) and has shadow equal to the theta series k. For more details we refer the
reader to [KRY].

E*(7,s)

s=0

c¢) This example was also mentioned in the introduction talk and concerns the independent work
of Duke, Li, Ehlen and Viazovska. Using the same notation as in the previous example, let H
denote the Hilbert class field of K and let ¢ : Gal(H/K) — C* denote a class group character.
Let 0, denote the theta-series attached to ¢. This is a cusp form of weight 1 if v is non-trivial
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and equal to Ey(1,x,) if ¢ is trivial. Duke, Li, Ehlen and Viazovska explicitly construct a weak
harmonic Maass form in H;(q, x,) which has shadow 6, and whose associated mock modular form
has coefficients that encode interesting arithmetic information in line with the Duke-Li conjecture.

d) The weight two Eisenstein series is defined by

Ex() 2( ZZ (mT +n)?

7n€Z neZ
_1+_ZZ (mT 4 n)?

mEZnGZ
_1—24201

n>1

The sum in the definition of this function does not converge absolutely. The Eisenstein series is
still holomorphic but it is not modular. In fact, we have Fy(7 + 1) = FE5(7) but because of the
failure of absolute convergence we have 772E5(—1/7) = E»(7) + —>. We introduce a correction
E3(7) := Ey(1) — % This function is modular but no longer holomorphic. It turns out that Ej
belongs to Hy(SLy(Z)) and has shadow the constant function 3/m. It follows that the weight two
Eisenstein series Fs is a mock modular form of weight 2 and level 1.

e) This example concerns Zagier’s mock modular form. For n positive, let H(n) denote the
Hurwitz class number of n, that is the class number of positive definite binary quadratic forms of
discriminant —n where forms are weighted by 2/g with g the order of their automorphism group.
Set H(0) = —1/12.

Theorem 2.1 (Zagier). The function

=Y Hn)q" + 3o \/_ZB (4mn’y)q

n>0 nez

belongs to H3/2(F0(4)) where [(s fl +-3/2p-5t 4t

The shadow of G is equal to the Jacobi theta function. In particular, Zagier shows that the
generating function of the Hurwitz class number is a mock modular form of weight 3/2.

3. SURJECTIVITY OF THE OPERATOR &

In this section we consider k € Z. We have defined the anti-linear map & from Hy y(N) to
M} (N) and seen that its kernel is given by M} , (N). The goal of this section is to prove that it is
surjective and thus that it induces exact sequences

0 — M} ,(N) — Hy_1(N) — My (N) —0
and
0 — My ,(N) — Hf ,(N) — Sp(N) — 0.

Our main tool in the proof of the surjectivity comes from complex geometry.

3.1. Hodge star operators on 4. The general theory of Hodge star operators and Laplacians
on manifolds can be found in [Voi], chapter 5. In this section we specialise to the complex upper
half-plane ‘H which is a complex manifold of real dimension 2. Let Cg denote the sheaf of real-
valued smooth functions on H and let Oz denote the sheaf of holomorphic functions on H. Let Tg
denote the real tangent bundle of H and let & denote the sheaf of real-valued differential 1-forms
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on H. If 7 € H then by definition the dual vector space (Tr,-)* is equal to the fiber £ . of &g at
7. Consider the Poincaré metric given for 7 = « + ¢y € H on the tangent space Tg . by

_(1Yy* 0
.gT_( 0 1/y2>

This defines a Riemannian metric on the upper half-plane H.
By Riesz’s representation theorem, the linear map r : Ty , — 8%“ defined by Y, — g, (-,Y;) is
an isomorphism. If o € Eg ., then let af :=r7'(a;). We define an inner product on &g , by

<Oé7—, ﬁT>T = 97—(047#, /67#)
One checks easily that dz# = yQB% and dy* = yza% so that the inner product is given by the matrix

(yo2 y02 > Finally, we endow /\2 Eflw with the inner product

(dx N dy,dx A dy), = det <y()2 ;2) =yt

It follows that the volume form on H associated to the Poincaré metric is given by Vol, = %.

By convention we set A" Er.» = C» and we endow this space with the inner product defined by
(f,9)r == f(m)g(7). Let k € {0, 1,2}. Right exterior product gives an isomorphism

pi N ek, — Hom(\" &k N\ ER )

defined by 3, — - A ;. Moreover, /\2 Eflm is trivialised by the volume form Vol.. By Riesz’s
representation theorem, we have an isomorphism

k k *
m: )\ €k, — (/\ efl{,,)
defined by a; — (-, a,),. We define the Hodge star at 7 to be

%, =p fom: /\k 5;1{’7 — /\Q_k 5111,7‘
It is characterised by the property that if g, € /\k 5%“, then for all a, € /\k 8;1{,7 we have
ar A xrBr = (ar, Br)7 Vol
These maps glue together to form a linear bundle isomorphism called the Hodge star
*: & — E&7F.
Remark 3.1. It can be checked that ! = (—1)F2=k),

We now turn to the computation of the Hodge star. We claim that x1 = Vol. Indeed, for any
f € Cg and any 7 we have

f(m) A Vol. = f(r)Vol, = (f, 1), Vol,.
We claim that xdx = dy. Indeed, we have

odr A\ dy

de Ndy =y 5— = (dv,dr);Vol, and dyAdx =0 = (dy,dr),Vol,.
)

Similarly one can check that *dy = —dz and *(dx A dy) = y*. We record these results:

xdr = dy xdy = —dx

(1) x1 = df”;;dy sdx N dy = 1°.
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Remark 3.2. Consider the sheaf £ of complex valued differential 1-forms on #. We have £, =
5'}1177 ® C and we extend the local Hodge star at 7 by C-linearity to an isomorphism

k 1 2—k 1
*7— . /\ gC,T H /\ SC,T'

If we extend the inner product on &g . to a Hermitian product on £, then the Hodge star is

characterised by the following property: if 3, € A E&.» then for all a, € A £&., we have
ar N\ rﬁT = <a’m BT>TVOIT'

These local maps glue together to form a linear bundle isomorphism * : £& — &7

3.2. Hodge star operators on modular curves. Let X = Xy(N) denote the closed modular
curve associated to I'g(N). It is a compact oriented complex manifold of real dimension 2. Recall
the Poincaré Hermitian product on £} induced by the inner product on £ given by the matrix

(%2 yog) with respect to the basis {dz,dy}. Let v = (¢%) € I'y(N) and consider the action of v on

‘H which is an isomorphism from H to itself. This map induces a pull-back map on 1-forms given
by v*dr = (¢t + d)~2d7 and v*d7 = (cT + d)~2d7. Since I(y(7)) = y/|cT + d|* we see that
(- '>’Y(T) = |CT+d|_4< )

Using the properties of the Hermitian product we therefore see that

(vdr, v dr),; = (cr + d) % (cF + d) > {dr, dT), = (dT,dT) ()

(v d7, v d7). = (cF +d) (e + d)72{dF, dT), = (AT, dT) )

(Yidr,y"d7); = 0 = (d, dT), ().
Thus the Poincaré metric is invariant under the action of I'g(N) and it therefore induces a Hermitian
metric on X. The volume form on X associated to this metric is given by the same expression
Vol, = dxy/\zdy as before. Note that this volume form is invariant under the action of T'o(N) and
therefore defines a 2-form on X.

Let C¥r denote the sheaf of real-valued smooth functions on X and let Ox denote the sheaf of

holomorphic functions on X. Let £ }(F denote the sheaf of F-valued differential 1-forms on X for

F = R, C. Using the induced Poincaré metric on X we get an induced metric on 5)2(70 just as in
the previous section and similarly we can define the Hodge star

% : Ef(c —>€)2(_(’§

which is characterised by the following property: if 8, € A" Ex.c,r then for all o, € N Ex.cr We
have
oy A *TﬁT = <a77 67)7\/017

Remark 3.3. Let z be a non cuspidal point of X. If x is not an elliptic point, then the holomorphic
chart on a small enough neighbourhood U of z is given by ¢ : U — U where U denotes the open
subset of H in the pre-image of U under the covering map H — Yy(N) := I'o(N) \ ‘H which lies in
the fundamental domain of T'g(N) and the map ¢ is just a lift of the quotient map. Thus for such a
point, the curve X is trivially identified with an open subset of H in the fundamental domain. At
elliptic points, one needs to be more careful in defining the local charts, but these are essentially
raising to a small power. At cusps, one need to use straightening maps and then wrap-around maps.
Note that if for example 36| /N then there are no elliptic points.

Because of this complex structure on X and the fact that the metric on X is induced from the
Poincaré metric on H, one can compute the Hodge star on X locally around non cuspidal, non
elliptic points by computing it locally on H as we did in (1). One needs to be a little more careful
around elliptic points and cusps but we will omit this here.
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Consider the universal generalized elliptic curve for I'o(N) given by © : & — X with zero-
section e : X — &£. Consider the cotangent space at the origin w := e*Q} /X which is a complex

line bundle over X (invertible sheaf of Ox-modules). Denote by w* the holomorphic line bundle
w® . Tt satisfies the property that My(N) = H°(X,w"*) where the isomorphism is given by f +
wr = f(7)(dz)* where z is the local coordinate on the fiber 77!(7) and dz locally trivialises w.
The bundle w* is equipped with a Hermitian metric (with logarithmic poles) given in the fibers

by (W, wy)r = f(T)g(T)y". Let EP denote the sheaf of complex-valued differential forms on X of
type (p, q). It is equipped with the Hermitian product induced by the Poincaré metric. The bundle
EP1 @ Wk = EPY R0, w is thus equipped with the Hermitian product

(@ wy, B@wy)r = (o, B)r (W, wy)r = (@, B)- f(7)g(7)y".
Notation. From now on we will simply write ® instead of ®o, .

Right exterior product gives a linear isomorphism

p: EFPITI R (W)Y — Hom(EP7 @ Wk, )

7 &7

where a, @ wy A B, @ ¢ := d(wys)a, A Br. Moreover, the bundle 8 = £ is trivialised by Vol.
The Riesz representation theorem gives an anti-linear isomorphism

m: €M © Wk — (E29 @ k)

defined by m(a, @wy) = (-, a, @ wy),. We get anti-linear isomorphisms %, := p~* om which glue
together to form an anti-linear isomorphism of bundles

% EPI QW — EITPITI @ (WF)

characterised by the following property: if S®@w, € EP1@w"(U) for some open subset U of X, then
for all 7 € U and all o, ® w; € EP7 ® w” we have

ar @wr A (38 @ wy))r = (ar @ wy, Br ® wy) Vol,.
By Riesz’s representation theorem we have an anti-linear isomorphism
rowt — (WD wpe (L wp)e
We have a perfect pairing
(E% @0, W) X (E20 @0, wF) — £

given on sections over U by (swy,tw,) — stfg. This identifies £ ®p, w™* with the dual sheaf
(E%° ®0, wF)*. If t € E%9(U) and g is a modular form of weight k, then we denote the element
corresponding to tg in %’ @ w*(U) by wy. If wy € w*(U), then r(wy) corresponds to wix in
50,0 ®Ox g_k(U).

Proposition 3.4. With the above identifications, the Hodge star is an anti-linear isomorphism of
bundles ¥; : EP1 @ wh — EVPITI @ w™F given on sections by ¥.(8 ® w,) = *B ® Wyk-

Proof. For all 7 and all o, @ wy € EP7 @ w* we have

ar @wp A (#0)r @ wryr = ar A (ﬁ)ff(T)myk = Qr /\m@)fﬂﬂg%—
= <a77 BT>T<wf7 wg>7—V017— = <aT ® wy, B’r ® wg>TV01T

where in the third equality we used the characterisation of the Hodge star on Sﬁfgﬁ. 0
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Notation. Let U be an open subset of X. We will use the notation fa to denote an element in
EP1 @ Wk (U). Here, f is some function from H to C and « is a C-valued differential form on H
of type (p,q). It is implicitly understood that f should decompose into a product of 3 functions
f = fifofs where f; € E%9(U), f5 has the property that foa € EP9(U) and f3 is holomorphic on U
such that f3(dz)* € w*. Then fa stands for the element

f1 @ fra® fi(dz2)" € €% @ep €M7 @ W (U) = EP1 @ wM(U).

We now turn to the computation of the Hodge star ;. Let U be an open subset of X. Using the
previous proposition together with (1) we get:

o If f € &M @ wk(U), then *,(f) = fy"*1 = fy*2dx A dy = L fy*2dr A dT.
o If fdr € M0 @ w*(U), then
%:(fdr) = fyF*(de +idy) = fy* * (do — idy) = fy*(dy + idx) = ify"d7.
o If fdr € £ @ WF(U), then
%1(fd7) = fyfx(de — idy) = fy* * (dx + idy) = fy*(dy — idx) = —ify*dr.
o If fdr NdT € EM @ w*(U), then
%x(fdr A dT) = fyf x (d7 Nd7) = fy*2i x (do A dy) = 2iy* T f.
3.3. Laplacians. Note that EM177 = £9179 @ QF. where Q) is the canonical bundle of X, that is
the bundle of holomorphic differential 1-forms on X. Using the Hodge star
% EM W — 9RO @w
one can define 9; = (—1)9(¥;) "t o 3%(@&_;“ 0¥ EM @ Wk — €971 @ w* and show that this is
the formal adjoint of ), : £ ® w* — £%9! @ wW* with respect to the Hermitian L?-metric on
HO(X, &% ® wF) given by (a, 8) 12 := [y (a, f)Vol where («, 8) is the function 7+ (e, 8;),. This

metric is defined since X is compact and oriented. We remark that by the characterisation of the
Hodge star we have (o, 5) 2 = fX a A %, Using this formal adjoint we can define the Laplacian

Agk = 5k52 -+ gzgk : gO,q ®gk — (c;O,q ®Qk

which is an elliptic differential operator of order 2. The interested reader can learn more about the
theory of Laplacians in [Voi].

Proposition 3.5. The Laplacian A : HO(X, % @ w*) — HO(X,E% @ w*) is given by
Ayk =*_j 0 éﬂk(@g*k 0 % 0 O) = §Ak.

Proof. The adjoint operator J; on £%° @ wF is the trivial map. Thus A = 8§ 0 9. By Remark 3.1
we have x 71 = % on £ and thus we see that (¥;)7! = %_;, on E%°®@w*. Thus 9; = i_koa%(@gk 0%},
Let f € H(X,E% ® wk). Using our Hodge star computations above, we see that

Awkf = >T<_k ©) 5Q1 Rw—k o ;k(gkf) = >T<_k (o] 591 Ruw—k (] ;k (gd’[')
L x &Y X oY T

- LOf 1 -
%0 ag&@g—k (_Zyka_£d7-> = —5*7;9 o 8Q§(®g_k(£kfd7')

%k (%(gkf)df A d7"> = in_k%(ﬁkf)

N~ N —

& 4(6f) = 5
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3.4. Proof of surjectivity of & _,. We use the same notation as above. Consider the Dolbeault
resolution of X .

00— Oy — E00 2, 01 .

Let {s1,---,s,} denote the cusps of X and form the divisor D := > _;s; € Div(X). Let n be a
positive integer and let O, p denote the holomorphic line bundle attached to the divisor nD, that
is the invertible sheaf of Ox-modules whose sections are given by

Onp(U) ={f € K(U) : div(f) = —nD}

where K is the sheaf of rational functions on X. The tensor product sheaf w?>=* @ O, p is a locally
free sheaf of Ox-modules of rank 1 (a holomorphic line bundle) and thus by tensoring with the
Dolbeault resolution we get an exact sequence

00— @0, — 0w ©0,p 2% £ 4wt 9O, —s 0.

The sheaves £%° @ w?>* ® O,,p and £%!' ® wW?* ® O,,p are sheaves of CX c-modules. It follows that
they are fine sheaves and as a consequence they are acyclic. By taking the long exact sequence in
cohomology we therefore get an exact sequence

0 — H'X,w ™ ®0,p) — H' (X, E 0w ® O0,p) — H' (X, @ w? " ® 0,p)
— H'(X,w**® 0,p) — 0.

We claim that for n large enough, the group H*(X,w? *® O, p) vanishes. By Serre duality we have
an isomorphism

H'(X,6*™ @ O,p) = H(X, 04 @ (@ © 0,p)")" = HU(X, 0k ©u*? @ O0_p)"

Recall the Kodaira-Spencer isomorphism KS : w? — Q4 (log cusps) given by (dz)? + dr. This
gives an isomorphism

M,2(N) = H(X,w'?) = H(X,w" ® Q% (log cusps))
and we have an identification
Srpa(N) =2 HY (X, w" @ Q).
We therefore have
HY (X, Q4 @ w2 ®@0_,p) = {f € Sk(N) : div(f) > nD}.

Thus if f belongs to this space, then deg(div(f)) > nr. But the degree of div(f) for f € Sx(N) only
depends on the weight k since if g € Sk(N), then f/g € K(X) so deg(div(f/g)) = 0 which implies
that deg(div(f)) = deg(div(g)). But for f € H*(X, Q% @w*2®0O_,p) we have deg(div(f)) — +o0
as n — +o0 so for n large enough we must have H°(X, Q% ® w* 2 ® O_,p) = 0. This proves our
claim.

Let g € M{(N). Our goal is to find f € Hy_(N) such that & _pf = g. Choose n a positive
integer large enough such that n > max;<;<,{ords,(¢)} and H'(X,w?** ® O,p) vanishes. Then we
have a short exact sequence

0— HYX,w " ®0,p) — H (X, 2w’ *® O0,p) — H'(X,E" @w* " ® 0,p) — 0.

Since g transforms as a weight & modular form we see that gdr ® (dz)*~2 defines a global w*-
valued differential form on X of type (1,0). In our above notation this form is denoted simply by
gdr. By our choice of n we see that gdr € H'(X, Y0 @ w2 ® O,p). Applying the Hodge star
operator we get

¥r_o(gdr) = iy"2gd7 € H'(X, £ @ w*™* ® O,p)
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and by the above exact sequence there exists f € H°(X, £’ ®@w?* *®0,,p) such that df = iy*~2gdr.
This implies
9, Of

—yT o =g= & (g) =g.

[t remains to be seen that f/2 € Hy_1(N). We have f € H*(X,E"°®w? *®0,p) so f/2 transforms
under ['o(V) as a weight 2 — k form. By Proposition 3.5 we have

Ay, (g) = Ape+(f) =*p20 5%(@@—2 0%k 0 Do k(f) = Fp_no 5%(@@—2 o ¥o_1,(iy" 2 gd7)
. 5 . 99 ,_
= ¥j_9 O 8Q§(®gk_z(gd7) = %p_o EdT ANdr | =0
since % = 0 by holomorphy of g on H. We know that f is modular and is annihilated by the

hyperbolic Laplacian of weight 2 — k. Reasoning as in the beginning of these notes, f admits a
Fourier expansion of the form

F(r) =Y cf(m)g" +¢; (0)y" "+ ¢ (n)H(2mny)e(nx)
nez ?Li%

and consequently we may speak of the holomorphic and the non-holomorphic parts of f. By
Proposition 1.5 and the fact that & (f/2) = ¢ is a weakly holomorphic modular form, we must
have ¢, (n) = 0 for all but finitely many n > 0. This must hold at all cusps. Finally, since
f e HYX,E" @ w** @ O,p) we see that the holomorphic part of f at each cusp must have

finite tail. This proves that f/2 satisfies the required growth conditions at the cusps and thus
f/2 € Hy_i(N) as desired.
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