
WEAK HARMONIC MAASS FORMS AND MOCK MODULAR FORMS

DAVID LILIENFELDT

Abstract. These are the notes of a talk at the Mock Modular Forms seminar at Concordia Uni-
versity, 5 October 2017. We define weak harmonic Maass forms and mock modular forms and give
some examples. We then prove surjectivity of the shadow map ξ. We mainly follow the expositions
in [BF] and [Ono]. No originality is claimed and any mistake found here is due to the author.
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1. Definitions

1.1. First definitions. Let k ∈ 1
2
Z and let γ = ( a bc d ) ∈ SL2(Z) (γ ∈ Γ0(4) if k ∈ 1

2
Z \ Z). Define

the automorphy factor for τ ∈ H and γ by

j(γ, τ) =

{√
cτ + d if k ∈ Z(
c
d

)
ε−1
d

√
cτ + d if k ∈ 1

2
Z \ Z

where
(
c
d

)
denotes the Jacobi symbol and εd = 1 or i depending on whether d = 1 or 3 modulo

4. We always take the principal branch of the square root. We remark that if k ∈ 1
2
Z \ Z, then

j(γ, τ) is the automorphy factor of the theta function Θ(τ) =
∑

n∈Z q
n2

. We define the weight k
slash operator on functions f : H −→ C by (f |kγ)(τ) = j(γ, τ)−2kf(γτ).

Definition 1.1. Let N ∈ N, k ∈ 1
2
Z (4|N if k ∈ 1

2
Z \ Z) and let χ be a Dirichlet character of

modulus N . A weak harmonic Maass form of weight k, level N and Nebentypus χ is a smooth
function f : H −→ C satisfying:

(a) f |kγ = χ(d)f for all γ ∈ Γ0(N).
(b) For each cusp s = α(∞) of Γ0(N), we have the following growth condition

(f |kα)(τ)� eCy as y → +∞

uniformly in x where τ = x+ iy and for some C > 0.
1
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(c) ∆kf = 0 where ∆k is the hyperbolic Laplacian of weight k defined by

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky(

∂

∂x
+ i

∂

∂y
)

= −4y2 ∂2

∂τ∂τ̄
+ 2iky

∂

∂τ̄
.

The space of such functions is denoted by Hk(N,χ).

Notation. We shall write M !
k(N,χ),Mk(N,χ) and Sk(N,χ) respectively for the weakly holomor-

phic, the holomorphic and the cuspidal modular forms of weight k, level N and Nebentypus χ. If
the character is trivial we shall omit it in the notation.

Remark 1.2. The space M !
k(N,χ) forms a subspace of Hk(N,χ) since holomorphic functions are

by definition annihilated by the anti-holomorphic derivative.

1.2. Fourier expansions. Like holomorphic modular forms, weak harmonic Maass forms admit
Fourier expansions that we shall now derive. We will suppose here and in the rest of these notes that
k 6= 1. Weight 1 forms also admit Fourier expansions with a slight modification to the coefficients
which can be derived in a similar way to what follows.

Let f ∈ H2−k(N,χ) with k 6= 1. Fix y > 0 and consider the function fy : R −→ C defined by
fy(x) = f(x+ iy). This function is 1-periodic by (a) and by smoothness admits a Fourier expansion
which converges absolutely and uniformly

f(τ) = fy(x) =
∑
n∈Z

an(y)qn =
∑
n∈Z

an(y)e−2πnye(nx)

where τ = x+ iy, e(u) = e2πiu and q = e(τ). By uniform convergence and (c) the coefficients of this
series satisfy the differential equation

∆k(an(y)qn) = 0⇔ d2an
dy2

(y) =

(
4πn+

k − 2

y

)
dan
dy

(y)

which is solved by successively solving two degree 1 equations, the first one giving an expression for
dan
dy

and the second one yielding an expression for an. This produces the following solutions{
an(y) = c+

f (n) + c−f (n)
∫∞
−4πny

e−ttk−2dt for n 6= 0

a0(y) = c+
f (0) + c−f (0)yk−1.

We define H(w) = e−w
∫∞
−2w

e−ttk−2dt. This integral converges for k > 1 and admits a meromor-
phic (holomorphic if w 6= 0) continuation in k in a similar way as for the gamma function. If w < 0,
then H(w) = e−wΓ(k − 1,−2w) where Γ(s, x) :=

∫∞
x
e−tts−1dt is the incomplete gamma function.

We have the following asymptotic behaviour

H(w) ∼

{
(2|w|)−ke−|w| for w → −∞
(−2w)−kew for w → +∞.

This is easily checked by dividing H(w) by these expressions and computing the limits. We have

f(τ) =
∑
n∈Z

c+
f (n)qn + c−f (0)yk−1 +

∑
n∈Z
n6=0

c−f (n)H(2πny)e(nx).

Using the asymptotics for the function H we see that the growth condition (b) forces{
c+
f (n) = 0 for all but finitely many n < 0

c−f (n) = 0 for all but finitely many n > 0.
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We have thus proved the following result.

Proposition 1.3. Let f ∈ H2−k(N,χ) with k 6= 1. At the cusp∞ the function f admits the Fourier
expansion

f(τ) =
∑

n�−∞

c+
f (n)qn + c−f (0)yk−1 +

∑
n�+∞
n6=0

c−f (n)H(2πny)e(nx).

A similar result holds at the other cusps.

Definition 1.4. Let f ∈ H2−k(N,χ). The holomorphic part of f is defined by

f+(τ) :=
∑

n�−∞

c+
f (n)qn

and is called a mock modular form of weight k, level N and Nebentypus χ. The non-holomorphic
part of f is denoted by

f−(τ) := c−f (0)yk−1 +
∑

n�+∞
n 6=0

c−f (n)H(2πny)e(nx).

1.3. The operator ξ. Consider the differential operator ξw := 2iyw ∂
∂τ̄

.

Proposition 1.5. The above operator defines an anti-linear map

ξ2−k : H2−k(N,χ) −→M !
k(N, χ̄)

given by

ξ2−kf(τ) = ξ2−kf
−(τ) = c−f (0)(k − 1)− (4π)k−1

∑
n�−∞
n6=0

c−f (−n)nk−1qn.

Proof. Let f ∈ H2−k(N,χ). Note that ∆2−k = ξkξ2−k. Thus ∆2−kf = 0 implies that ξk(ξ2−kf) = 0
which gives ∂f

∂τ̄
= 0. This proves that ξ2−kf is a holomorphic function on the upper half plane. The

modular transformation property can be checked by direct computation. It remains to see that the
conditions at the cusps are satisfied in order to prove that ξ2−kf is indeed a weakly holomorphic
modular form.

Since f+ is holomorphic we have ξ2−kf = ξ2−kf
−. Writing out the definition of the function H

we have

f−(τ) = c−f (0)yk−1 +
∑

n�+∞
n6=0

c−f (n)

(∫ ∞
−4πny

e−ttk−2dt

)
qn.

A quick computation yields ξ2−k(y
k−1) = k − 1 and ξ2−k(

∫∞
−4πny

e−ttk−2dt) = −(−4πn)k−1e4πny.

Whence
ξ2−kf

−(τ) = c−f (0)(k − 1)− (4π)k−1
∑

n�+∞
n6=0

c−f (n)(−n)k−1e4πnyqn.

Notice that e4πnyqn = q−n. By change of variable we get the formula

ξ2−kf
−(τ) = c−f (0)(k − 1)− (4π)k−1

∑
n�−∞
n6=0

c−f (−n)nk−1qn.

A similar formula holds at each cusp. This proves that ξ2−kf is meromorphic at the cusps and thus
belongs to M !

k(N, χ̄) as claimed. �

Remark 1.6. Let f ∈ H2−k(N,χ) with ξ2−kf = 0. Then f− = 0 so f is holomorphic. Thus the
kernel of ξ2−k is M !

2−k(N,χ).
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Definition 1.7. If f ∈ H2−k(N,χ), then the form ξ2−kf ∈M !
k(N, χ̄) is called the shadow of f .

Remark 1.8. The coefficients of the non-holomorphic part of f ∈ H2−k(N,χ) can be recovered
from the shadow of f via a period integral.

Definition 1.9. We defineH+
2−k(N,χ) to be the subspace ofH2−k(N,χ) consisting of weak harmonic

Maass forms whose shadow is a cusp form, that is H+
2−k(N,χ) := ξ−1

2−k(Sk(N, χ̄)).

The forms f that belong to the subspace H+
2−k(N,χ) satisfy the following growth condition at

the cusps:
(b′) For each cusp s = α(∞) of Γ0(N) there exists a polynomial Ps,f ∈ C[q−1] such that

(f |2−kα)(τ)− Ps,f (τ)� e−εy as y → +∞ for some ε > 0.

These forms are completely determined by this condition in the sense that we could define
H+

2−k(N,χ) to be the space of smooth functions f : H −→ C satisfying conditions (a), (b′) and
(c). This is the definition of weak harmonic Maass forms given in [Ono] whereas the definition that
we use in these notes is the more general one of [BF]. Incorporating this stronger growth condition
at the cusps in our previous proof of the Fourier expansion yields the following result.

Proposition 1.10. Let f ∈ H+
2−k(N,χ). At the cusp∞ the function f admits the Fourier expansion

f(τ) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1,−4πny)qn.

A similar result holds at the other cusps.

Remark 1.11. Note that if k ≤ 0, then Sk(N, χ̄) = 0 so that H+
2−k(N,χ) = M !

2−k(N,χ) in this
case.

2. Examples

a) All weakly holomorphic modular forms are weak harmonic Maass forms as we have already
remarked. More precisely we have the inclusions M !

2−k(N,χ) ⊂ H+
2−k(N,χ) ⊂ H2−k(N,χ).

b) This example concerns the incoherent Eisenstein series of Kudla, Rapoport and Yang that was
mentioned in the introduction talk of this seminar. Let q > 3 be a prime congruent to 3 modulo 4,
set K = Q(

√
−q) and let χq : (Z/qZ)× → C× be a quadratic character. Consider the Eisenstein

family

E−(τ, s) := ys/2
∑

( ∗ ∗c d )∈Γ∞\Γ

(cτ + d)−1|cτ + d|−sφ−q (γ)

where φ−q (c, d) = χ−1
q (d) if c ≡ 0 mod q and φ−q (c, d) = −iq−1/2χq(c) otherwise. The completed

Eisenstein series E∗−(τ, s) := qs+1/2Λ(s + 1, χq)E−(τ, s) has a zero at s = 0. Kudla, Rapoport and
Yang proved that the incoherent Eisenstein series attached to (1, χq) defined by

φ(τ) :=
d

ds

∣∣∣∣
s=0

E∗−(τ, s)

belongs to H1(q, χq) and has shadow equal to the theta series θK . For more details we refer the
reader to [KRY].

c) This example was also mentioned in the introduction talk and concerns the independent work
of Duke, Li, Ehlen and Viazovska. Using the same notation as in the previous example, let H
denote the Hilbert class field of K and let ψ : Gal(H/K) −→ C× denote a class group character.
Let θψ denote the theta-series attached to ψ. This is a cusp form of weight 1 if ψ is non-trivial
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and equal to E1(1, χq) if ψ is trivial. Duke, Li, Ehlen and Viazovska explicitly construct a weak
harmonic Maass form in H1(q, χq) which has shadow θψ and whose associated mock modular form
has coefficients that encode interesting arithmetic information in line with the Duke-Li conjecture.

d) The weight two Eisenstein series is defined by

E2(τ) =
1

2ζ(2)

∑
m∈Z

∑′

n∈Z

1

(mτ + n)2

= 1 +
3

π2

∑
m∈Z
n6=0

∑
n∈Z

1

(mτ + n)2

= 1− 24
∑
n≥1

σ1(n)qn.

The sum in the definition of this function does not converge absolutely. The Eisenstein series is
still holomorphic but it is not modular. In fact, we have E2(τ + 1) = E2(τ) but because of the
failure of absolute convergence we have τ−2E2(−1/τ) = E2(τ) + 6

πiτ
. We introduce a correction

E∗2(τ) := E2(τ) − 3
πy

. This function is modular but no longer holomorphic. It turns out that E∗2
belongs to H2(SL2(Z)) and has shadow the constant function 3/π. It follows that the weight two
Eisenstein series E2 is a mock modular form of weight 2 and level 1.

e) This example concerns Zagier’s mock modular form. For n positive, let H(n) denote the
Hurwitz class number of n, that is the class number of positive definite binary quadratic forms of
discriminant −n where forms are weighted by 2/g with g the order of their automorphism group.
Set H(0) = −1/12.

Theorem 2.1 (Zagier). The function

G(τ) :=
∑
n≥0

H(n)qn +
1

16π
√
y

∑
n∈Z

β(4πn2y)q−n
2

belongs to H3/2(Γ0(4)) where β(s) :=
∫∞

1
t−3/2e−stdt.

The shadow of G is equal to the Jacobi theta function. In particular, Zagier shows that the
generating function of the Hurwitz class number is a mock modular form of weight 3/2.

3. Surjectivity of the operator ξ

In this section we consider k ∈ Z. We have defined the anti-linear map ξ2−k from H2−k(N) to
M !

k(N) and seen that its kernel is given by M !
2−k(N). The goal of this section is to prove that it is

surjective and thus that it induces exact sequences

0 −→M !
2−k(N) −→ H2−k(N) −→M !

k(N) −→ 0

and

0 −→M !
2−k(N) −→ H+

2−k(N) −→ Sk(N) −→ 0.

Our main tool in the proof of the surjectivity comes from complex geometry.

3.1. Hodge star operators on H. The general theory of Hodge star operators and Laplacians
on manifolds can be found in [Voi], chapter 5. In this section we specialise to the complex upper
half-plane H which is a complex manifold of real dimension 2. Let C∞R denote the sheaf of real-
valued smooth functions on H and let OH denote the sheaf of holomorphic functions on H. Let TR
denote the real tangent bundle of H and let E1

R denote the sheaf of real-valued differential 1-forms
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on H. If τ ∈ H then by definition the dual vector space (TR,τ )
∗ is equal to the fiber E1

R,τ of E1
R at

τ . Consider the Poincaré metric given for τ = x+ iy ∈ H on the tangent space TR,τ by

gτ =
(

1/y2 0

0 1/y2

)
.

This defines a Riemannian metric on the upper half-plane H.
By Riesz’s representation theorem, the linear map r : TR,τ −→ E1

R,τ defined by Yτ 7→ gτ ( · , Yτ ) is

an isomorphism. If ατ ∈ E1
R,τ , then let α#

τ := r−1(ατ ). We define an inner product on E1
R,τ by

〈ατ , βτ 〉τ := gτ (α
#
τ , β

#
τ ).

One checks easily that dx# = y2 ∂
∂x

and dy# = y2 ∂
∂y

so that the inner product is given by the matrix(
y2 0
0 y2

)
. Finally, we endow

∧2 E1
R,τ with the inner product

〈dx ∧ dy, dx ∧ dy〉τ = det
(
y2 0
0 y2

)
= y4.

It follows that the volume form on H associated to the Poincaré metric is given by Volτ = dx∧dy
y2

.

By convention we set
∧0 E1

R,τ = C∞R,τ and we endow this space with the inner product defined by
〈f, g〉τ := f(τ)g(τ). Let k ∈ {0, 1, 2}. Right exterior product gives an isomorphism

p :
∧2−k

E1
R,τ −→ Hom(

∧k
E1
R,τ ,

∧2
E1
R,τ )

defined by βτ 7→ · ∧ βτ . Moreover,
∧2 E1

R,τ is trivialised by the volume form Volτ . By Riesz’s
representation theorem, we have an isomorphism

m :
∧k
E1
R,τ −→

(∧k
E1
R,τ

)∗
defined by ατ 7→ 〈 · , ατ 〉τ . We define the Hodge star at τ to be

∗τ := p−1 ◦m :
∧k
E1
R,τ −→

∧2−k
E1
R,τ .

It is characterised by the property that if βτ ∈
∧k E1

R,τ , then for all ατ ∈
∧k E1

R,τ we have

ατ ∧ ∗τβτ = 〈ατ , βτ 〉τVolτ .

These maps glue together to form a linear bundle isomorphism called the Hodge star

∗ : EkR −→ E2−k
R .

Remark 3.1. It can be checked that ∗−1 = (−1)k(2−k)∗.

We now turn to the computation of the Hodge star. We claim that ∗1 = Vol. Indeed, for any
f ∈ C∞R and any τ we have

f(τ) ∧ Volτ = f(τ)Volτ = 〈f, 1〉τVolτ .

We claim that ∗dx = dy. Indeed, we have

dx ∧ dy = y2dx ∧ dy
y2

= 〈dx, dx〉τVolτ and dy ∧ dx = 0 = 〈dy, dx〉τVolτ .

Similarly one can check that ∗dy = −dx and ∗(dx ∧ dy) = y2. We record these results:

(1)
∗dx = dy ∗dy = −dx
∗1 = dx∧dy

y2
∗dx ∧ dy = y2.
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Remark 3.2. Consider the sheaf E1
C of complex valued differential 1-forms on H. We have E1

C,τ =

E1
R,τ ⊗C and we extend the local Hodge star at τ by C-linearity to an isomorphism

∗τ :
∧k
E1
C,τ −→

∧2−k
E1
C,τ .

If we extend the inner product on E1
R,τ to a Hermitian product on E1

C,τ then the Hodge star is

characterised by the following property: if βτ ∈
∧k E1

C,τ , then for all ατ ∈
∧k E1

C,τ we have

ατ ∧ ∗τβτ = 〈ατ , βτ 〉τVolτ .

These local maps glue together to form a linear bundle isomorphism ∗ : EkC −→ E2−k
C .

3.2. Hodge star operators on modular curves. Let X = X0(N) denote the closed modular
curve associated to Γ0(N). It is a compact oriented complex manifold of real dimension 2. Recall
the Poincaré Hermitian product on E1

C induced by the inner product on E1
R given by the matrix(

y2 0
0 y2

)
with respect to the basis {dx, dy}. Let γ = ( a bc d ) ∈ Γ0(N) and consider the action of γ on

H which is an isomorphism from H to itself. This map induces a pull-back map on 1-forms given
by γ∗dτ = (cτ + d)−2dτ and γ∗dτ̄ = (cτ̄ + d)−2dτ̄ . Since =(γ(τ)) = y/|cτ + d|2 we see that

〈 · , · 〉γ(τ) = |cτ + d|−4〈 · , · 〉τ .
Using the properties of the Hermitian product we therefore see that

〈γ∗dτ, γ∗dτ〉τ = (cτ + d)−2(cτ̄ + d)−2〈dτ, dτ〉τ = 〈dτ, dτ〉γ(τ)

〈γ∗dτ̄ , γ∗dτ̄〉τ = (cτ̄ + d)−2(cτ + d)−2〈dτ̄ , dτ̄〉τ = 〈dτ̄ , dτ̄〉γ(τ)

〈γ∗dτ, γ∗dτ̄〉τ = 0 = 〈dτ, dτ̄〉γ(τ).

Thus the Poincaré metric is invariant under the action of Γ0(N) and it therefore induces a Hermitian
metric on X. The volume form on X associated to this metric is given by the same expression
Volτ = dx∧dy

y2
as before. Note that this volume form is invariant under the action of Γ0(N) and

therefore defines a 2-form on X.
Let C∞X,R denote the sheaf of real-valued smooth functions on X and let OX denote the sheaf of

holomorphic functions on X. Let E1
X,F denote the sheaf of F-valued differential 1-forms on X for

F = R,C. Using the induced Poincaré metric on X we get an induced metric on E2
X,C just as in

the previous section and similarly we can define the Hodge star

∗ : EkX,C −→ E2−k
X,C

which is characterised by the following property: if βτ ∈
∧k E1

X,C,τ then for all ατ ∈
∧k E1

X,C,τ we
have

ατ ∧ ∗τβτ = 〈ατ , βτ 〉τVolτ

Remark 3.3. Let x be a non cuspidal point of X. If x is not an elliptic point, then the holomorphic
chart on a small enough neighbourhood U of x is given by φ : U −→ Ũ where Ũ denotes the open
subset of H in the pre-image of U under the covering map H −→ Y0(N) := Γ0(N) \H which lies in
the fundamental domain of Γ0(N) and the map φ is just a lift of the quotient map. Thus for such a
point, the curve X is trivially identified with an open subset of H in the fundamental domain. At
elliptic points, one needs to be more careful in defining the local charts, but these are essentially
raising to a small power. At cusps, one need to use straightening maps and then wrap-around maps.
Note that if for example 36|N then there are no elliptic points.

Because of this complex structure on X and the fact that the metric on X is induced from the
Poincaré metric on H, one can compute the Hodge star on X locally around non cuspidal, non
elliptic points by computing it locally on H as we did in (1). One needs to be a little more careful
around elliptic points and cusps but we will omit this here.
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Consider the universal generalized elliptic curve for Γ0(N) given by π : E −→ X with zero-
section e : X −→ E . Consider the cotangent space at the origin ω := e∗Ω1

E/X which is a complex

line bundle over X (invertible sheaf of OX-modules). Denote by ωk the holomorphic line bundle
ω⊗k. It satisfies the property that Mk(N) ∼= H0(X,ωk) where the isomorphism is given by f 7→
ωf = f(τ)(dz)k where z is the local coordinate on the fiber π−1(τ) and dz locally trivialises ω.
The bundle ωk is equipped with a Hermitian metric (with logarithmic poles) given in the fibers

by 〈ωf , ωg〉τ := f(τ)g(τ)yk. Let Ep,q denote the sheaf of complex-valued differential forms on X of
type (p, q). It is equipped with the Hermitian product induced by the Poincaré metric. The bundle
Ep,q ⊗ ωk := Ep,q ⊗OX

ωk is thus equipped with the Hermitian product

〈α⊗ ωf , β ⊗ ωg〉τ := 〈α, β〉τ 〈ωf , ωg〉τ = 〈α, β〉τf(τ)g(τ)yk.

Notation. From now on we will simply write ⊗ instead of ⊗OX
.

Right exterior product gives a linear isomorphism

p : E1−p,1−q
τ ⊗ (ωkτ )

∗ −→ Hom(Ep,qτ ⊗ ωkτ , E1,1
τ )

where ατ ⊗ ωf ∧ βτ ⊗ φ := φ(ωf )ατ ∧ βτ . Moreover, the bundle E1,1 = E2
C is trivialised by Vol.

The Riesz representation theorem gives an anti-linear isomorphism

m : Ep,qτ ⊗ ωkτ −→ (Ep,qτ ⊗ ωkτ )∗

defined by m(ατ ⊗ωf ) = 〈 · , ατ ⊗ωf〉τ . We get anti-linear isomorphisms ∗̄k,τ := p−1 ◦m which glue
together to form an anti-linear isomorphism of bundles

∗̄k : Ep,q ⊗ ωk −→ E1−p,1−q ⊗ (ωk)∗

characterised by the following property: if β⊗ωg ∈ Ep,q⊗ωk(U) for some open subset U of X, then
for all τ ∈ U and all ατ ⊗ ωf ∈ Ep,qτ ⊗ ωkτ we have

ατ ⊗ ωf ∧ (∗̄k(β ⊗ ωg))τ = 〈ατ ⊗ ωf , βτ ⊗ ωg〉Volτ .

By Riesz’s representation theorem we have an anti-linear isomorphism

r : ωkτ −→ (ωkτ )
∗, ωf 7→ 〈 · , ωf〉τ .

We have a perfect pairing

(E0,0 ⊗OX
ωk)× (E0,0 ⊗OX

ω−k) −→ E0,0

given on sections over U by (sωf , tωg) 7→ stfg. This identifies E0,0 ⊗OX
ω−k with the dual sheaf

(E0,0 ⊗OX
ωk)∗. If t ∈ E0,0(U) and g is a modular form of weight k, then we denote the element

corresponding to tg in E0,0 ⊗ ωk(U) by ωtg. If ωf ∈ ωk(U), then r(ωf ) corresponds to ωf̄yk in

E0,0 ⊗OX
ω−k(U).

Proposition 3.4. With the above identifications, the Hodge star is an anti-linear isomorphism of
bundles ∗̄k : Ep,q ⊗ ωk −→ E1−p,1−q ⊗ ω−k given on sections by ∗̄k(β ⊗ ωg) = ∗β ⊗ ωf̄yk .

Proof. For all τ and all ατ ⊗ ωf ∈ Ep,qτ ⊗ ωkτ we have

ατ ⊗ ωf ∧ (∗β)τ ⊗ ωf̄yk = ατ ∧ (∗β)τf(τ)g(τ)yk = ατ ∧ ∗τβτ 〈ωf , ωg〉τ
= 〈ατ , βτ 〉τ 〈ωf , ωg〉τVolτ = 〈ατ ⊗ ωf , βτ ⊗ ωg〉τVolτ

where in the third equality we used the characterisation of the Hodge star on Ep+qX,C,τ . �
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Notation. Let U be an open subset of X. We will use the notation fα to denote an element in
Ep,q ⊗ ωk(U). Here, f is some function from H to C and α is a C-valued differential form on H
of type (p, q). It is implicitly understood that f should decompose into a product of 3 functions
f = f1f2f3 where f1 ∈ E0,0(U), f2 has the property that f2α ∈ Ep,q(U) and f3 is holomorphic on U
such that f3(dz)k ∈ ωk. Then fα stands for the element

f1 ⊗ f2α⊗ f3(dz)k ∈ E0,0 ⊗C∞X,C
Ep,q ⊗ ωk(U) = Ep,q ⊗ ωk(U).

We now turn to the computation of the Hodge star ∗̄k. Let U be an open subset of X. Using the
previous proposition together with (1) we get:

• If f ∈ E0,0 ⊗ ωk(U), then ∗̄k(f) = f̄yk∗1 = f̄yk−2dx ∧ dy = i
2
f̄yk−2dτ ∧ dτ̄ .

• If fdτ ∈ E1,0 ⊗ ωk(U), then

∗̄k(fdτ) = f̄yk∗(dx+ idy) = f̄yk ∗ (dx− idy) = f̄yk(dy + idx) = if̄ykdτ̄ .

• If fdτ̄ ∈ E0,1 ⊗ ωk(U), then

∗̄k(fdτ̄) = f̄yk∗(dx− idy) = f̄yk ∗ (dx+ idy) = f̄yk(dy − idx) = −if̄ykdτ.
• If fdτ ∧ dτ̄ ∈ E1,1 ⊗ ωk(U), then

∗̄k(fdτ ∧ dτ̄) = f̄yk ∗ (dτ̄ ∧ dτ) = f̄yk2i ∗ (dx ∧ dy) = 2iy2+kf̄ .

3.3. Laplacians. Note that E1,1−q = E0,1−q ⊗ Ω1
X where Ω1

X is the canonical bundle of X, that is
the bundle of holomorphic differential 1-forms on X. Using the Hodge star

∗̄k : E0,q ⊗ ωk −→ E0,1−q ⊗ Ω1
X ⊗ ω−k

one can define ∂̄∗k := (−1)q(∗̄k)−1 ◦ ∂̄Ω1
X⊗ω−k ◦ ∗̄k : E0,q ⊗ ωk −→ E0,q−1 ⊗ ωk and show that this is

the formal adjoint of ∂̄k : E0,q ⊗ ωk −→ E0,q+1 ⊗ ωk with respect to the Hermitian L2-metric on
H0(X, E0,q ⊗ ωk) given by (α, β)L2 :=

∫
X
〈α, β〉Vol where 〈α, β〉 is the function τ 7→ 〈ατ , βτ 〉τ . This

metric is defined since X is compact and oriented. We remark that by the characterisation of the
Hodge star we have (α, β)L2 =

∫
X
α ∧ ∗̄kβ. Using this formal adjoint we can define the Laplacian

∆ωk := ∂̄k∂̄
∗
k + ∂̄∗k ∂̄k : E0,q ⊗ ωk −→ E0,q ⊗ ωk

which is an elliptic differential operator of order 2. The interested reader can learn more about the
theory of Laplacians in [Voi].

Proposition 3.5. The Laplacian ∆ωk : H0(X, E0,0 ⊗ ωk) −→ H0(X, E0,0 ⊗ ωk) is given by

∆ωk = ∗̄−k ◦ ∂̄Ω1
X⊗ω−k ◦ ∗̄k ◦ ∂̄k =

1

2
∆k.

Proof. The adjoint operator ∂̄∗k on E0,0⊗ωk is the trivial map. Thus ∆ωk = ∂̄∗k ◦ ∂̄k. By Remark 3.1

we have ∗−1 = ∗ on E0,0 and thus we see that (∗̄k)−1 = ∗̄−k on E0,0⊗ωk. Thus ∂̄∗k = ∗̄−k◦∂̄Ω1
X⊗ω−k◦∗̄k.

Let f ∈ H0(X, E0,0 ⊗ ωk). Using our Hodge star computations above, we see that

∆ωkf = ∗̄−k ◦ ∂̄Ω1
X⊗ω−k ◦ ∗̄k(∂̄kf) = ∗̄−k ◦ ∂̄Ω1

X⊗ω−k ◦ ∗̄k
(
∂f

∂τ̄
dτ̄

)
= ∗̄−k ◦ ∂̄Ω1

X⊗ω−k

(
−iyk ∂f

∂τ̄
dτ

)
= −1

2
∗̄−k ◦ ∂̄Ω1

X⊗ω−k(ξkfdτ)

=
1

2
∗̄−k

(
∂

∂τ̄
(ξkf)dτ ∧ dτ̄

)
= iy2−k ∂

∂τ̄
(ξkf)

=
1

2
ξ2−k(ξkf) =

1

2
∆k.
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3.4. Proof of surjectivity of ξ2−k. We use the same notation as above. Consider the Dolbeault
resolution of X

0 −→ OX −→ E0,0 ∂̄−→ E0,1 −→ 0.

Let {s1, · · · , sr} denote the cusps of X and form the divisor D :=
∑r

i=1 si ∈ Div(X). Let n be a
positive integer and let OnD denote the holomorphic line bundle attached to the divisor nD, that
is the invertible sheaf of OX-modules whose sections are given by

OnD(U) = {f ∈ K(U) : div(f) ≥ −nD}
where K is the sheaf of rational functions on X. The tensor product sheaf ω2−k ⊗OnD is a locally
free sheaf of OX-modules of rank 1 (a holomorphic line bundle) and thus by tensoring with the
Dolbeault resolution we get an exact sequence

0 −→ ω2−k ⊗OnD −→ E0,0 ⊗ ω2−k ⊗OnD
∂̄⊗1⊗1−→ E0,1 ⊗ ω2−k ⊗OnD −→ 0.

The sheaves E0,0 ⊗ ω2−k ⊗OnD and E0,1 ⊗ ω2−k ⊗OnD are sheaves of C∞X,C-modules. It follows that
they are fine sheaves and as a consequence they are acyclic. By taking the long exact sequence in
cohomology we therefore get an exact sequence

0 −→ H0(X,ω2−k ⊗OnD) −→ H0(X, E0,0 ⊗ ω2−k ⊗OnD) −→ H0(X, E0,1 ⊗ ω2−k ⊗OnD)

−→ H1(X,ω2−k ⊗OnD) −→ 0.

We claim that for n large enough, the group H1(X,ω2−k⊗OnD) vanishes. By Serre duality we have
an isomorphism

H1(X,ω2−k ⊗OnD) ∼= H0(X,Ω1
X ⊗ (ω2−k ⊗OnD)∗)∗ ∼= H0(X,Ω1

X ⊗ ωk−2 ⊗O−nD)∗.

Recall the Kodaira-Spencer isomorphism KS : ω2 −→ Ω1
X(log cusps) given by (dz)2 7→ dτ . This

gives an isomorphism

Mr+2(N) ∼= H0(X,ωr+2) ∼= H0(X,ωr ⊗ Ω1
X(log cusps))

and we have an identification
Sr+2(N) ∼= H0(X,ωr ⊗ Ω1

X).

We therefore have

H0(X,Ω1
X ⊗ ωk−2 ⊗O−nD) = {f ∈ Sk(N) : div(f) ≥ nD}.

Thus if f belongs to this space, then deg(div(f)) ≥ nr. But the degree of div(f) for f ∈ Sk(N) only
depends on the weight k since if g ∈ Sk(N), then f/g ∈ K(X) so deg(div(f/g)) = 0 which implies
that deg(div(f)) = deg(div(g)). But for f ∈ H0(X,Ω1

X⊗ωk−2⊗O−nD) we have deg(div(f))→ +∞
as n → +∞ so for n large enough we must have H0(X,Ω1

X ⊗ ωk−2 ⊗O−nD) = 0. This proves our
claim.

Let g ∈ M !
k(N). Our goal is to find f ∈ H2−k(N) such that ξ2−kf = g. Choose n a positive

integer large enough such that n ≥ max1≤i≤r{ordsi(g)} and H1(X,ω2−k ⊗OnD) vanishes. Then we
have a short exact sequence

0 −→ H0(X,ω2−k ⊗OnD) −→ H0(X, E0,0 ⊗ ω2−k ⊗OnD) −→ H0(X, E0,1 ⊗ ω2−k ⊗OnD) −→ 0.

Since g transforms as a weight k modular form we see that gdτ ⊗ (dz)k−2 defines a global ωk-
valued differential form on X of type (1, 0). In our above notation this form is denoted simply by
gdτ . By our choice of n we see that gdτ ∈ H0(X, E1,0 ⊗ ωk−2 ⊗ OnD). Applying the Hodge star
operator we get

∗̄k−2(gdτ) = iyk−2ḡdτ̄ ∈ H0(X, E0,1 ⊗ ω2−k ⊗OnD)
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and by the above exact sequence there exists f ∈ H0(X, E0,0⊗ω2−k⊗OnD) such that ∂̄f = iyk−2ḡdτ̄ .
This implies

−iy2−k ∂f

∂τ̄
= ḡ ⇒ ξ2−k

(
f

2

)
= g.

It remains to be seen that f/2 ∈ H2−k(N). We have f ∈ H0(X, E0,0⊗ω2−k⊗OnD) so f/2 transforms
under Γ0(N) as a weight 2− k form. By Proposition 3.5 we have

∆2−k

(
f

2

)
= ∆ω2−k(f) = ∗̄k−2 ◦ ∂̄Ω1

X⊗ωk−2 ◦ ∗̄2−k ◦ ∂̄2−k(f) = ∗̄k−2 ◦ ∂̄Ω1
X⊗ωk−2 ◦ ∗̄2−k(iy

k−2ḡdτ̄)

= ∗̄k−2 ◦ ∂̄Ω1
X⊗ωk−2(gdτ) = ∗̄k−2

(
∂g

∂τ̄
dτ̄ ∧ dτ

)
= 0

since ∂g
∂τ̄

= 0 by holomorphy of g on H. We know that f is modular and is annihilated by the
hyperbolic Laplacian of weight 2 − k. Reasoning as in the beginning of these notes, f admits a
Fourier expansion of the form

f(τ) =
∑
n∈Z

c+
f (n)qn + c−f (0)yk−1 +

∑
n∈Z
n6=0

c−f (n)H(2πny)e(nx)

and consequently we may speak of the holomorphic and the non-holomorphic parts of f . By
Proposition 1.5 and the fact that ξ2−k(f/2) = g is a weakly holomorphic modular form, we must
have c−f (n) = 0 for all but finitely many n > 0. This must hold at all cusps. Finally, since

f ∈ H0(X, E0,0 ⊗ ω2−k ⊗ OnD) we see that the holomorphic part of f at each cusp must have
finite tail. This proves that f/2 satisfies the required growth conditions at the cusps and thus
f/2 ∈ H2−k(N) as desired.
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